试题
题目:
(2004·镇江)如图,在Rt△ABC中,∠C=90°,∠A=15°.
(1)作AB边的垂直平分线DE交AC于点D、AB于点E,连接BD.(尺规作图,不写作法,保留作图痕迹)
(2)在(1)的基础上,若BC=1,则AD=
2
2
,tanA=
2-
3
2-
3
.
答案
2
2-
3
解:(1)如图:
(2)连接BD.
∵DE为AB的垂直平分线,
∴AD=BD,∠ABD=∠A=15°,
在Rt△BCD中,∠CBD=90°-2∠A=60°,
∵BC=1,
∴BD=
BC
cos∠CBD
=2,DC=
3
,
∴AD=2,
∴CA=AD+CD=2+
3
∴tanA=BC:CA=2-
3
.
考点梳理
考点
分析
点评
作图—复杂作图;解直角三角形.
(1)分别以A,B为圆心,以任意长(等长)为半径作弧,过两弧的交点作AB的垂线,与AC交于点D,与AB交于点E;
(2)作辅助线,连接BD,可得:∠CBD=60°,在Rt△BCD中,根据三角函数可得BD,CD的长,又DE为AB的垂直平分线,可得:AD=AB可将tanA的值求出.
本题主要考查垂直平分线的画法及锐角三角函数的运用.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.