试题
题目:
(2009·孝感)对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊕”:(a,b)⊕(c,d)=(ac-bd,ad+bc).若(1,2)⊕(p,q)=(5,0),则p=
1
1
,q=
-2
-2
.
答案
1
-2
解:根据题意可知(1,2)⊕(p,q)=(p-2q,q+2p)=(5,0),
∴p-2q=5,q+2p=0,
解得p=1,q=-2.
答案:1,-2.
考点梳理
考点
分析
点评
专题
有理数的混合运算.
首先根据运算“⊕”:(a,b)⊕(c,d)=(ac-bd,ad+bc),可知(1,2)⊕(p,q)=(p-2q,q+2p),再由规定:当且仅当a=c且b=d时,(a,b)=(c,d),得出p-2q=5,q+2p=0,解关于p、q的二元一次方程组,即可得出结果.
此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.
解题关键是对号入座不要找错对应关系.
压轴题;新定义.
找相似题
计算:
(1)
(-2)÷[(-
1
2
)
2
×(
1
2
)
3
]×|-
25
4
|-(-5)
;
(2)-(-1)
2005
+4÷(-2)-|-1
2
|.
计算下列各式的值:
(1)
0.25×(-2
)
3
-[4÷(-
2
3
)
2
+1]+(-1
)
2008
;
(2)(
7
9
-
5
6
+
3
4
-
7
18
)×(-36).
计算:
-
1
4
-(
7
3
-
11
17
-
14
15
)×(-五五)÷(-1
)
7五五9
计算:
①
(
1
6
-
1
8
+
1
12
)÷(-
1
24
)
;
②-2
2
-(-2)
2
+(-3)
2
×(-
2
3
)-4
2
÷|-4|.
①计算:(+12)+(-23)-(-33)
②计算:
-
2
2
-16÷(-4)×(-
3
4
)