试题
题目:
观察算式:1+3=
(1+3)×2
2
,1+3+5=
(1+5)×3
2
,1+3+5+7=
(1+7)×4
2
…
按规律填空:1+3+5+7+…+99=
2500
2500
.
答案
2500
解:1+3+5+7+…+99=
(1+99)×50
2
=2500.
考点梳理
考点
分析
点评
专题
有理数的混合运算.
根据题中材料可知规律为:第一个数与最后一个数的和再乘以第一个数与最后一个数的和的一半,再除以2.
考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.
规律型.
找相似题
计算:
(1)
(-2)÷[(-
1
2
)
2
×(
1
2
)
3
]×|-
25
4
|-(-5)
;
(2)-(-1)
2005
+4÷(-2)-|-1
2
|.
计算下列各式的值:
(1)
0.25×(-2
)
3
-[4÷(-
2
3
)
2
+1]+(-1
)
2008
;
(2)(
7
9
-
5
6
+
3
4
-
7
18
)×(-36).
计算:
-
1
4
-(
7
3
-
11
17
-
14
15
)×(-五五)÷(-1
)
7五五9
计算:
①
(
1
6
-
1
8
+
1
12
)÷(-
1
24
)
;
②-2
2
-(-2)
2
+(-3)
2
×(-
2
3
)-4
2
÷|-4|.
①计算:(+12)+(-23)-(-33)
②计算:
-
2
2
-16÷(-4)×(-
3
4
)