试题
题目:
(1)-2+
1
2
÷(-2);
(2)(1-
1
6
+
3
4
)×(-48);
(3)-2
2
×5-(-2)
3
÷4;
(4)-18+(-14)-(-18)-13.
答案
解:(1)原式=-2+
1
2
÷(-2)=-2-
1
4
=-
9
4
;
(2)原式=-48+8-36=-76;
(3)原式=-4×5-(-8)÷4=-20+2=-18;
(4)原式=-18-14+18-13=-27.
解:(1)原式=-2+
1
2
÷(-2)=-2-
1
4
=-
9
4
;
(2)原式=-48+8-36=-76;
(3)原式=-4×5-(-8)÷4=-20+2=-18;
(4)原式=-18-14+18-13=-27.
考点梳理
考点
分析
点评
有理数的混合运算.
(1)根据先乘除后加减的顺序进行计算.
(2)运用乘法分配律进行计算.
(3)先进行幂的运算,然后再进行乘除加减的运算.
(4)从左至右依次进行加减的运算.
本题考查有理数的混合运算,属于基础题,关键要根据运算法则进行有序的运算.
找相似题
计算:
(1)
(-2)÷[(-
1
2
)
2
×(
1
2
)
3
]×|-
25
4
|-(-5)
;
(2)-(-1)
2005
+4÷(-2)-|-1
2
|.
计算下列各式的值:
(1)
0.25×(-2
)
3
-[4÷(-
2
3
)
2
+1]+(-1
)
2008
;
(2)(
7
9
-
5
6
+
3
4
-
7
18
)×(-36).
计算:
-
1
4
-(
7
3
-
11
17
-
14
15
)×(-五五)÷(-1
)
7五五9
计算:
①
(
1
6
-
1
8
+
1
12
)÷(-
1
24
)
;
②-2
2
-(-2)
2
+(-3)
2
×(-
2
3
)-4
2
÷|-4|.
①计算:(+12)+(-23)-(-33)
②计算:
-
2
2
-16÷(-4)×(-
3
4
)