答案
5515 |
 |
九=1 |
解:(1)根据
n |
 |
k=1 |
k=1+c+3+…+(n-1)+n,
令n=c01c,得到1+c+3+…+c01c=
c01c |
 |
k=1 |
;
(c)根据题意得:
10 |
 |
k=1 |
(x-k)=(x-1)+(x-c)+(x-3)+…+(x-10)
=10x-(1+c+3+…+10)=10x-22;
(3)根据题意得:
3 |
 |
k=1 |
[(x-k)(x-k-1)]
=(x-1)(x-c)+(x-c)(x-3)+(x-3)(x-4)
=x
c-3x+c+x
c-2x+6+x
c-7x+1c
=3x
c-12x+c0.
故答案为:
c01c |
 |
k=1 |
.