试题
题目:
如图,AE为∠FAB的平分线,∠1=∠C,则下列结论错误的是( )
A.∠B=∠C
B.∠FAB+∠C=180°
C.AE∥BC
D.∠B=∠2
答案
B
解:∵∠1=∠C,
∴AE∥BC,
∴∠2=∠B,
∵AE为∠FAB的平分线,
∴∠1=∠2,
∴∠B=∠C,
故A,C,D正确;
B中∠C与∠BAC的大小关系不确定,错误.
故选B.
考点梳理
考点
分析
点评
平行线的判定与性质;角平分线的定义.
根据平行线的性质、判定及角平分线的定义计算.
先判断出AE∥BC,再根据平行线的性质分析.
找相似题
推理填空:
如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明.
解:∠AED=∠C.理由如下:
∵∠EFD+∠EFG=180°(邻补角的定义)
∠BDG+∠EFG=180°(已知)
∴∠BDG=∠EFD(
同角的补角相等
同角的补角相等
)
∴BD∥EF(
内错角相等,两直线平行
内错角相等,两直线平行
)
∴∠BDE+∠DEF=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
又∵∠DEF=∠B(
已知
已知
)
∴∠BDE+∠B=180°(
等量代换
等量代换
)
∴DE∥BC(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
∴∠AED=∠C(
两直线平行,同位角相等
两直线平行,同位角相等
)
如图,直线m⊥l,n⊥l,∠1=∠2,求证:∠3=∠4.
如图,已知:AD∥BC,∠A=∠C.
(1)AB与CD平行吗?为什么?
(2)如果∠ABC比∠C大40°,求出∠C的度数.
如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.
如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?