试题
题目:
推理填空:
如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明.
解:∠AED=∠C.理由如下:
∵∠EFD+∠EFG=180°(邻补角的定义)
∠BDG+∠EFG=180°(已知)
∴∠BDG=∠EFD(
同角的补角相等
同角的补角相等
)
∴BD∥EF(
内错角相等,两直线平行
内错角相等,两直线平行
)
∴∠BDE+∠DEF=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
又∵∠DEF=∠B(
已知
已知
)
∴∠BDE+∠B=180°(
等量代换
等量代换
)
∴DE∥BC(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
∴∠AED=∠C(
两直线平行,同位角相等
两直线平行,同位角相等
)
答案
同角的补角相等
内错角相等,两直线平行
两直线平行,同旁内角互补
已知
等量代换
同旁内角互补,两直线平行
两直线平行,同位角相等
解:∠AED=∠C.理由如下:
∵∠EFD+∠EFG=180°,(邻补角的定义)
∠BDG+∠EFG=180°,(已知)
∴∠BDG=∠EFD.(同角的补角相等)
∴BD∥EF.(内错角相等,两直线平行)
∴∠BDE+∠DEF=180°.(两直线平行,同旁内角互补)
又∵∠DEF=∠B,(已知)
∴∠BDE+∠B=180°.(等量代换)
∴DE∥BC.(同旁内角互补,两直线平行)
∴∠AED=∠C.(两直线平行,同位角相等)
考点梳理
考点
分析
点评
专题
平行线的判定与性质;对顶角、邻补角.
做此题的关键是找出图中角与角的关系,即同位角,内错角,同旁内角等.利用平行线的性质和判定填空.
本题主要考查了平行线的判定和性质,熟记定理是解题的关键.
推理填空题.
找相似题
如图,直线m⊥l,n⊥l,∠1=∠2,求证:∠3=∠4.
如图,已知:AD∥BC,∠A=∠C.
(1)AB与CD平行吗?为什么?
(2)如果∠ABC比∠C大40°,求出∠C的度数.
如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.
如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?
已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.