试题
题目:
已知,∠CGD=∠CAB,∠1=∠2,EF⊥BC,试说明:AD⊥BC.
答案
证明:∵∠CGD=∠CAB,
∴DG∥AB(同位角相等,两直线平行);
∴∠1=∠3(两直线平行,内错角相等);
又∵∠1=∠2,
∴∠2=∠3(等量代换),
∴EF∥AD(同位角相等,两直线平行);
而EF⊥BC,
∴AD⊥BC.
证明:∵∠CGD=∠CAB,
∴DG∥AB(同位角相等,两直线平行);
∴∠1=∠3(两直线平行,内错角相等);
又∵∠1=∠2,
∴∠2=∠3(等量代换),
∴EF∥AD(同位角相等,两直线平行);
而EF⊥BC,
∴AD⊥BC.
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
由同位角∠CGD=∠CAB推知两直线DG∥AB,所以内错角∠1=∠3;然后由已知条件和等量代换求得同位角∠2=∠3;所以两直线EF∥AD;最后根据平行线中的一条垂直于另一条直线,则另一条平行线也垂直于同一条直线证得AD⊥BC.
本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.
证明题.
找相似题
推理填空:
如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明.
解:∠AED=∠C.理由如下:
∵∠EFD+∠EFG=180°(邻补角的定义)
∠BDG+∠EFG=180°(已知)
∴∠BDG=∠EFD(
同角的补角相等
同角的补角相等
)
∴BD∥EF(
内错角相等,两直线平行
内错角相等,两直线平行
)
∴∠BDE+∠DEF=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
又∵∠DEF=∠B(
已知
已知
)
∴∠BDE+∠B=180°(
等量代换
等量代换
)
∴DE∥BC(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
∴∠AED=∠C(
两直线平行,同位角相等
两直线平行,同位角相等
)
如图,直线m⊥l,n⊥l,∠1=∠2,求证:∠3=∠4.
如图,已知:AD∥BC,∠A=∠C.
(1)AB与CD平行吗?为什么?
(2)如果∠ABC比∠C大40°,求出∠C的度数.
如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.
如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?