试题
题目:
如图,∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)求∠DCA的度数;
(2)求∠FEA的度数.
答案
解:(1)∵∠DAB+∠D=180°,
∴AB∥DC,
∵AC平分∠DAB,
∴∠DAC=∠BAC=25°,
∴∠DCA=25°;
(2)∵∠B=95°,
∴∠FEA=∠B+∠EAB=95°+25°=120°.
解:(1)∵∠DAB+∠D=180°,
∴AB∥DC,
∵AC平分∠DAB,
∴∠DAC=∠BAC=25°,
∴∠DCA=25°;
(2)∵∠B=95°,
∴∠FEA=∠B+∠EAB=95°+25°=120°.
考点梳理
考点
分析
点评
平行线的判定与性质.
(1)根据同旁内角互补可判定DC∥AB,再根据平行线的性质和角平分线的定义即可求出∠DCA的度数;
(2)有(1)和∠B的度数,利用三角形的外角和定理即可求出∠FEA的度数.
本题考查了平行线的判定和平行线的性质、角平分线的定义以及三角形的外角和定理,题目难度一般.
找相似题
推理填空:
如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明.
解:∠AED=∠C.理由如下:
∵∠EFD+∠EFG=180°(邻补角的定义)
∠BDG+∠EFG=180°(已知)
∴∠BDG=∠EFD(
同角的补角相等
同角的补角相等
)
∴BD∥EF(
内错角相等,两直线平行
内错角相等,两直线平行
)
∴∠BDE+∠DEF=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
又∵∠DEF=∠B(
已知
已知
)
∴∠BDE+∠B=180°(
等量代换
等量代换
)
∴DE∥BC(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
∴∠AED=∠C(
两直线平行,同位角相等
两直线平行,同位角相等
)
如图,直线m⊥l,n⊥l,∠1=∠2,求证:∠3=∠4.
如图,已知:AD∥BC,∠A=∠C.
(1)AB与CD平行吗?为什么?
(2)如果∠ABC比∠C大40°,求出∠C的度数.
如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.
如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?