试题
题目:
如图,已知AD⊥BC,EF⊥BC,DG∥AC,求证:∠1=∠2.
答案
证明:∵AD⊥BC,EF⊥BC,
∴∠ADC=∠EFC=90°,
∴AD∥EF,
∴∠1=∠3,
∵DG∥AC,
∴∠2=∠3,
∴∠1=∠2.
证明:∵AD⊥BC,EF⊥BC,
∴∠ADC=∠EFC=90°,
∴AD∥EF,
∴∠1=∠3,
∵DG∥AC,
∴∠2=∠3,
∴∠1=∠2.
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
首先根据垂直证明AD∥EF,再根据平行线的性质可得∠1=∠3,然后再根据DG∥AC可得∠2=∠3,再根据等量代换可得∠1=∠2.
此题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
证明题.
找相似题
推理填空:
如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明.
解:∠AED=∠C.理由如下:
∵∠EFD+∠EFG=180°(邻补角的定义)
∠BDG+∠EFG=180°(已知)
∴∠BDG=∠EFD(
同角的补角相等
同角的补角相等
)
∴BD∥EF(
内错角相等,两直线平行
内错角相等,两直线平行
)
∴∠BDE+∠DEF=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
又∵∠DEF=∠B(
已知
已知
)
∴∠BDE+∠B=180°(
等量代换
等量代换
)
∴DE∥BC(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
∴∠AED=∠C(
两直线平行,同位角相等
两直线平行,同位角相等
)
如图,直线m⊥l,n⊥l,∠1=∠2,求证:∠3=∠4.
如图,已知:AD∥BC,∠A=∠C.
(1)AB与CD平行吗?为什么?
(2)如果∠ABC比∠C大40°,求出∠C的度数.
如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.
如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?