试题
题目:
如图,已知∠DAB+∠ABC+∠BCE=360°.
(1)说明AD与CE的位置关系,并说明理由;
(2)求证:∠ABC=∠BAH+∠BCG.
答案
解:(1)过点B作BF∥CE,
则∠BCE+∠CBF=180°,
∵∠DAB+∠ABC+∠BCE=360°,
∴∠BAD+∠ABF=180°,
∴AD∥BF,
∴AD∥CE;
(2)∵BF∥CE,
∴∠BCG=∠CBF,
∵AD∥BF,
∴∠BAH=∠ABF,
∴∠CBF+∠ABF=∠BCG+∠BAH,
∴∠ABC=∠BAH+∠BCG.
解:(1)过点B作BF∥CE,
则∠BCE+∠CBF=180°,
∵∠DAB+∠ABC+∠BCE=360°,
∴∠BAD+∠ABF=180°,
∴AD∥BF,
∴AD∥CE;
(2)∵BF∥CE,
∴∠BCG=∠CBF,
∵AD∥BF,
∴∠BAH=∠ABF,
∴∠CBF+∠ABF=∠BCG+∠BAH,
∴∠ABC=∠BAH+∠BCG.
考点梳理
考点
分析
点评
平行线的判定与性质.
(1)过点B作BF∥CE,根据∠BCE+∠CBF=180°,∠DAB+∠ABC+∠BCE=360°,得出∠BAD+∠ABF=180°,AD∥BF,即可得出答案,
(2)根据BF∥CE,得出∠BCG=∠CBF,根据AD∥BF,得出∠BAH=∠ABF,最后根据∠CBF+∠ABF=∠BCG+∠BAH,即可得出答案.
此题考查了平行线的判定与性质,解答此题的关键是作出辅助线,注意平行线的性质和判定定理的综合运用.
找相似题
推理填空:
如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明.
解:∠AED=∠C.理由如下:
∵∠EFD+∠EFG=180°(邻补角的定义)
∠BDG+∠EFG=180°(已知)
∴∠BDG=∠EFD(
同角的补角相等
同角的补角相等
)
∴BD∥EF(
内错角相等,两直线平行
内错角相等,两直线平行
)
∴∠BDE+∠DEF=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
又∵∠DEF=∠B(
已知
已知
)
∴∠BDE+∠B=180°(
等量代换
等量代换
)
∴DE∥BC(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
∴∠AED=∠C(
两直线平行,同位角相等
两直线平行,同位角相等
)
如图,直线m⊥l,n⊥l,∠1=∠2,求证:∠3=∠4.
如图,已知:AD∥BC,∠A=∠C.
(1)AB与CD平行吗?为什么?
(2)如果∠ABC比∠C大40°,求出∠C的度数.
如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.
如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?