试题
题目:
已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.
答案
证明:∵∠ACB=90°,
∴∠ACD=∠ACB=90°,
在△BEC和△ADC中
∵
BC=AC
∠BCE=∠ACD
CE=CD
,
∴△BEC≌△ADC(SAS),
∴∠CBE=∠DAC,
∵∠ACB=90°,
∴∠CBE+∠CEB=90°,
∵∠CEB=∠AEF,
∴∠DAC+∠AEF=90°,
∴∠AFE=180°-90°=90°,
∴BF⊥AD.
证明:∵∠ACB=90°,
∴∠ACD=∠ACB=90°,
在△BEC和△ADC中
∵
BC=AC
∠BCE=∠ACD
CE=CD
,
∴△BEC≌△ADC(SAS),
∴∠CBE=∠DAC,
∵∠ACB=90°,
∴∠CBE+∠CEB=90°,
∵∠CEB=∠AEF,
∴∠DAC+∠AEF=90°,
∴∠AFE=180°-90°=90°,
∴BF⊥AD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰直角三角形.
求出△BEC≌△ADC,推出∠CBE=∠DAC,根据∠CBE+∠CEB=90°推出∠DAC+∠AEF=90°,求出∠AFE=90°,根据垂直定义求出即可.
本题考查了全等三角形的性质和判定,垂直定义,三角形的内角和定理等知识点,关键是求出∠CBE=∠DAC,主要考查学生运用定理进行推理的能力.
证明题.
找相似题
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点
,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.
(1)求证:△EGM为等腰三角形;
(2)判断线段BG、AF与FG的数量关系并证明你的结论.
如图,△ABC是等腰直角三角形,∠ACB=90°,BE⊥CE,AD⊥CE,垂足为D、E.
(1)求证:△BCE≌△CAD;
(2)若AD=4,DE=2.5,求BE的长.
将两个完全相同的长方形拼成如图所示的“L”形图案,判断△ACF是什么三角形?说明理由.
如图,在四边形ABCD中,∠A=45°,∠C=90°,∠ABD=75°,∠DBC=30°,AB=2
2
.求BC的长.