试题
题目:
已知:如图,△ABC中,AB=AC,∠BAC=90°,若CD⊥BD于D点,且BD交AC于E点,问当BD满足什么条件时,CD=
1
2
BE?并证明你的判断.
答案
解:当BD是∠ABC的平分线时,CD=
1
2
BE,
理由是:延长BA和CD交于F,
∵∠BAC=90°,CD⊥BD,
∴∠BAC=∠FAC=90°=∠BDC,
∵∠AEB=∠DEC,
根据三角形的内角和定理得:∠ABE=∠FCA,
在△ABE和△ACF中
∠BAE=∠CAF
AB=AC
∠ABE=∠ACF
,
∴△ABE≌△ACF,
∴CF=BE,
∵BD是∠ABC的平分线,
∴∠ABE=∠CBE,
∵∠FDB=∠CDB,
在△FDB和△CDB中
∠FBD=∠CBD
BD=BD
∠FDB=∠CDB
,
∴△FDB≌△CDB,
∴CD=DF=
1
2
CF=
1
2
BE,
即当BD是∠ABC的平分线时,CD=
1
2
BE.
解:当BD是∠ABC的平分线时,CD=
1
2
BE,
理由是:延长BA和CD交于F,
∵∠BAC=90°,CD⊥BD,
∴∠BAC=∠FAC=90°=∠BDC,
∵∠AEB=∠DEC,
根据三角形的内角和定理得:∠ABE=∠FCA,
在△ABE和△ACF中
∠BAE=∠CAF
AB=AC
∠ABE=∠ACF
,
∴△ABE≌△ACF,
∴CF=BE,
∵BD是∠ABC的平分线,
∴∠ABE=∠CBE,
∵∠FDB=∠CDB,
在△FDB和△CDB中
∠FBD=∠CBD
BD=BD
∠FDB=∠CDB
,
∴△FDB≌△CDB,
∴CD=DF=
1
2
CF=
1
2
BE,
即当BD是∠ABC的平分线时,CD=
1
2
BE.
考点梳理
考点
分析
点评
专题
等腰直角三角形;三角形内角和定理;全等三角形的判定与性质.
延长BA和CD交于F,求出∠ABE=∠FCA,根据ASA证△ABE≌△ACF,求出BE=CF,证△FBD≌△CBD,推出CD=DF即可.
本题考查了对等腰直角三角形,全等三角形的性质和判定,三角形的内角和定理等知识点的应用,关键是正确作辅助线后构造全等的三角形,通过做此题培养了学生的阅读问题和分析问题的能力,题型较好.
证明题.
找相似题
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点
,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.
(1)求证:△EGM为等腰三角形;
(2)判断线段BG、AF与FG的数量关系并证明你的结论.
如图,△ABC是等腰直角三角形,∠ACB=90°,BE⊥CE,AD⊥CE,垂足为D、E.
(1)求证:△BCE≌△CAD;
(2)若AD=4,DE=2.5,求BE的长.
将两个完全相同的长方形拼成如图所示的“L”形图案,判断△ACF是什么三角形?说明理由.
如图,在四边形ABCD中,∠A=45°,∠C=90°,∠ABD=75°,∠DBC=30°,AB=2
2
.求BC的长.