试题
题目:
如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.
答案
解:BD=AE,AE⊥BD;
证明:∵AB∥CE,∠BAC=90°,
∴∠ACE=90°,
在△ABD和△CAE中,
AB=AC
∠BAC=∠ACE
AD=CE
∴△ABD≌△CAE(SAS),
∴BD=AE.
∴:∠ABD+∠EAB=∠ACE+∠EAB=90°
∴AE⊥BD
∴BD=AE,AE⊥BD;
解:BD=AE,AE⊥BD;
证明:∵AB∥CE,∠BAC=90°,
∴∠ACE=90°,
在△ABD和△CAE中,
AB=AC
∠BAC=∠ACE
AD=CE
∴△ABD≌△CAE(SAS),
∴BD=AE.
∴:∠ABD+∠EAB=∠ACE+∠EAB=90°
∴AE⊥BD
∴BD=AE,AE⊥BD;
考点梳理
考点
分析
点评
专题
等腰直角三角形;全等三角形的判定与性质.
先证∠ABD=∠CAE,再证△ABD≌△CAE即可得出答案.
本题考查等腰三角形的性质,难度不大,注意利用全等三角形的知识证明线段的相等.
证明题.
找相似题
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点
,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.
(1)求证:△EGM为等腰三角形;
(2)判断线段BG、AF与FG的数量关系并证明你的结论.
如图,△ABC是等腰直角三角形,∠ACB=90°,BE⊥CE,AD⊥CE,垂足为D、E.
(1)求证:△BCE≌△CAD;
(2)若AD=4,DE=2.5,求BE的长.
将两个完全相同的长方形拼成如图所示的“L”形图案,判断△ACF是什么三角形?说明理由.
如图,在四边形ABCD中,∠A=45°,∠C=90°,∠ABD=75°,∠DBC=30°,AB=2
2
.求BC的长.