试题
题目:
关于x的方程||x-2|-1|=a恰有三个整数解,则a的值为
1
1
.
答案
1
解:①若|x-2|-1=a,
当x≥2时,x-2-1=a,解得:x=a+3,a≥-1;
当x<2时,2-x-1=a,解得:x=1-a;a>-1;
②若|x-2|-1=-a,
当x≥2时,x-2-1=-a,解得:x=-a+3,a≤1;
当x<2时,2-x-1=-a,解得:x=a+1,a<1;
又∵方程有三个整数解,
∴可得:a=-1或1,根据绝对值的非负性可得:a≥0.
即a只能取1.
故答案为1.
考点梳理
考点
分析
点评
专题
含绝对值符号的一元一次方程.
根据绝对值的性质可得|x-2|-1=±a,然后讨论x≥2及x<2的情况下解的情况,再根据方程有三个整数解可得出a的值.
本题考查含绝对值的一元一次方程,难度较大,掌握绝对值的性质及不等式的解集的求法是关键.
计算题.
找相似题
解方程:|2x+1|-|x-5|=6.
解下列方程:
(1)|5x-2|=3;
(2)
|x|-1
5
-1=
6-|x|
5
.
解方程|x-下|+|x+3|=7.
先看例子,再解类似的题目.
解方程:|x|+1=3.
解法一:当x≥0时,原方程化为x+1=3.解方程,得x=2;当x<0时,原方程化为-x+1=3.解方程,得x=-2.所以方程|x|+1=3的解是x=2或x=-2.
解法二:移项,得|x|=3-1.合并同类项,得|x|=2.由绝对值的意义知x=±2,所以原方程的解为x=2或x=-2.
用你学到的方法解方程:2|x|-3=5.(用两种方法解)
解方程|九|-2=0,可以按下面的步骤进行:
解:当九≥0时,得九-2=0.
解这个方程,得九=2.
当九<0时,得-九-2=0.
解这个方程,得九=-2.
所以原方程的解是九=2或九=-2.
仿照上述的解题过程,解方程|九-2|-十=0.