试题
题目:
若关于x的方程|x|=ax+1只有一个负根,则a的取值范围是
a>1
a>1
.
答案
a>1
解:当x>0时,方程是:x=ax+1
解得:x=
1
1-a
,根据题意得:1-a>0,
解得:a<1,此时有正根,
则a>1时有负根,
当x<0时,-x=ax+1,
解得:x=-
1
1+a
,根据题意1+a>0,
解得:a>-1,
综上所述;a>1时,方程|x|=ax+1只有一个负根.
故答案是:a>1.
考点梳理
考点
分析
点评
含绝对值符号的一元一次方程.
分别确定x为正,x为负时a的取值,然后即可确定a的范围.
本题主要考查了绝对值方程的解法,正确去掉绝对值符号是解题关键.
找相似题
解方程:|2x+1|-|x-5|=6.
解下列方程:
(1)|5x-2|=3;
(2)
|x|-1
5
-1=
6-|x|
5
.
解方程|x-下|+|x+3|=7.
先看例子,再解类似的题目.
解方程:|x|+1=3.
解法一:当x≥0时,原方程化为x+1=3.解方程,得x=2;当x<0时,原方程化为-x+1=3.解方程,得x=-2.所以方程|x|+1=3的解是x=2或x=-2.
解法二:移项,得|x|=3-1.合并同类项,得|x|=2.由绝对值的意义知x=±2,所以原方程的解为x=2或x=-2.
用你学到的方法解方程:2|x|-3=5.(用两种方法解)
解方程|九|-2=0,可以按下面的步骤进行:
解:当九≥0时,得九-2=0.
解这个方程,得九=2.
当九<0时,得-九-2=0.
解这个方程,得九=-2.
所以原方程的解是九=2或九=-2.
仿照上述的解题过程,解方程|九-2|-十=0.