试题
题目:
某种细菌在培养过程中,每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由一个可分裂繁殖成
16
16
个.
答案
16
解:由细菌在培养过程中,每半小时分裂一次(由一个分裂为两个),
得到细菌分裂的周期为半小时即0.5小时,
∴经过两小时,这种细菌分裂了4次,
故经过两小时,这种细菌由一个可分裂繁殖成2
4
=16个.
故答案为:16
考点梳理
考点
分析
点评
专题
有理数的乘方.
根据题意求出这种细菌分裂的周期,然后用2除以周期得到细菌分裂的次数,然后利用乘方即2的4次方即可求出经过2小时细菌分裂的个数.
考查了有理数的乘方,细菌分裂1次,细菌个数为2
1
;分裂2次,细菌个数为2
2
;…;分裂n次,细菌个数为2
n
.学生做题时总结出此规律是解本题的关键.
计算题.
找相似题
(1)|-t|=
t
t
,(2)
(-
1
2
)
t
=
-
1
8
-
1
8
,(t)
1
1
t
的倒数是
t
4
t
4
.
比较大小:3
2
>
>
2
3
.
(-
2
3
)(-
2
3
)(-
2
3
)(-
2
3
)
写成幂的形式是
(-
2
3
)
4
(-
2
3
)
4
.
有理数-2
2
,(-2)
3
,-|-2|,-
1
2
,用小于号连接,按从小到大的顺序排列为
(-2)
3
<-2
2
<-|-2|<-
1
2
(-2)
3
<-2
2
<-|-2|<-
1
2
.
比较大小:-0.3
2
>
>
-0.2
2
(用<,=,>填空)