试题
题目:
如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角板的三个顶点A、B、C分别槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中你发现线段AD与BE有什么关系?试说明你的结论.
答案
解:AD=BE,AD⊥BE.
理由如下:
∵∠D=90°,
∴∠ABD+∠BAD=90°
又∵∠ABC=90°,
∴∠ABD+∠EBC=90°
∴∠BAD=∠EBC;
又∵AB=BC,∠D=∠E;
∴△ABD≌△BCE(AAS);
∴AD=BE,AD⊥BE.
解:AD=BE,AD⊥BE.
理由如下:
∵∠D=90°,
∴∠ABD+∠BAD=90°
又∵∠ABC=90°,
∴∠ABD+∠EBC=90°
∴∠BAD=∠EBC;
又∵AB=BC,∠D=∠E;
∴△ABD≌△BCE(AAS);
∴AD=BE,AD⊥BE.
考点梳理
考点
分析
点评
专题
全等三角形的应用.
易发现AD与BE所在的△ABD与△BCE在滑动过程中始终全等,因而AD=BE.
本题考查了全等三角形的应用;证明两条线段相等,一般证明它们所在的三角形全等.本题中不论三角板如何滑动,始终有AB=BC,∠ABC=90度,做题时要注意找规律.
应用题.
找相似题
如图是某建筑物顶部示意图,图中所有的三角形都是全等的直角三角形,已知AC=2m,BC=3AC,你能求出CD的长吗?若能,请求出;若不能,请说明理由.
如图所示,小明为了测量河的宽度,他先站在河边的C点面向河对岸,压低帽檐,使目光正好落在河对岸的A点,然后他姿势不变,原地转了一个角度,正好看见了他所在岸上的一块石头B点,他测量了BC=30m.你能猜出河有多宽吗?说说理由.
王小文同学正为本班的板报设计一幅图案,在设计中需要画两个全等的三角形,王小文同学已经画出了其中的一个,你觉得怎样可以画出另一个三角形?
如图所示,在某市郊的空旷平地上有一个较大的土丘,经分析判断很可能是一座王储陵墓,请你应用所学的知识设计一种方案,能用尺量出不能达到的A、B两点的距离.(只要求说明设计方案和这种方案设计的根据,并画出草图,不
要求数据计算)
如图,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.
(1)证明△ACD≌△CBE;
(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.