试题
题目:
如图所示,在某市郊的空旷平地上有一个较大的土丘,经分析判断很可能是一座王储陵墓,请你应用所学的知识设计一种方案,能用尺量出不能达到的A、B两点的距离.(只要求说明设计方案和这种方案设计的根据,并画出草图,不
要求数据计算)
答案
解:在地面上找一个能同时看到A、B两点的点O,分别在AO、BO的延长线上取点C、D使CO=AO,DO=BO,只需量出CD的长度即为A、B两点的距离.
根据:△AOB与△COD中,
CO=AO,DO=BO,
又∠AOB=∠COD,
∴△AOB≌△COD,
∴AB=CD,
量出CD的长度即为A、B两点的距离.
解:在地面上找一个能同时看到A、B两点的点O,分别在AO、BO的延长线上取点C、D使CO=AO,DO=BO,只需量出CD的长度即为A、B两点的距离.
根据:△AOB与△COD中,
CO=AO,DO=BO,
又∠AOB=∠COD,
∴△AOB≌△COD,
∴AB=CD,
量出CD的长度即为A、B两点的距离.
考点梳理
考点
分析
点评
专题
全等三角形的应用.
本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有操作性,需要测量的线段和角度在空地一侧可实施,就可以达到目的.
本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.还要注意方案的可操作性.
应用题;方案型.
找相似题
如图是某建筑物顶部示意图,图中所有的三角形都是全等的直角三角形,已知AC=2m,BC=3AC,你能求出CD的长吗?若能,请求出;若不能,请说明理由.
如图所示,小明为了测量河的宽度,他先站在河边的C点面向河对岸,压低帽檐,使目光正好落在河对岸的A点,然后他姿势不变,原地转了一个角度,正好看见了他所在岸上的一块石头B点,他测量了BC=30m.你能猜出河有多宽吗?说说理由.
王小文同学正为本班的板报设计一幅图案,在设计中需要画两个全等的三角形,王小文同学已经画出了其中的一个,你觉得怎样可以画出另一个三角形?
如图,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.
(1)证明△ACD≌△CBE;
(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.
如图,是一块“L”形状的木板,请你用线段把它分成4个全等的部分,并且每一部分的形状仍要保持“L”形.