试题

题目:
青果学院如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC
答案
解:∵DE∥BC,EF∥AB,
∴∠A=∠FEC,∠AED=∠C,
∴△ADE∽△ECF;
∴S△ADE:S△ECF=(AE:EC)2
∵S△ADE=4cm2,S△EFC=9cm2
∴(AE:EC)2=4:9,
∴AE:EC=2:3,
即EC:AE=3:2,
∴(EC+AE):AE=5:2,
即AC:AE=5:2.
∵DE∥BC,
∴∠C=∠AED,
又∵∠A=∠A,
∴△ABC∽△ADE,
∴S△ABC:S△ADE=(AC:AE)2
∴S△ABC:4=(5:2)2
∴S△ABC=25cm2
解:∵DE∥BC,EF∥AB,
∴∠A=∠FEC,∠AED=∠C,
∴△ADE∽△ECF;
∴S△ADE:S△ECF=(AE:EC)2
∵S△ADE=4cm2,S△EFC=9cm2
∴(AE:EC)2=4:9,
∴AE:EC=2:3,
即EC:AE=3:2,
∴(EC+AE):AE=5:2,
即AC:AE=5:2.
∵DE∥BC,
∴∠C=∠AED,
又∵∠A=∠A,
∴△ABC∽△ADE,
∴S△ABC:S△ADE=(AC:AE)2
∴S△ABC:4=(5:2)2
∴S△ABC=25cm2
考点梳理
相似三角形的判定与性质.
首先求出△ADE∽△ECF,得出S△ADE:S△ECF=(AE:EC)2,进而得出AE:EC=2:3,在得出S△ABC:S△ADE=(5:2)2,求出答案即可.
此题主要考查了相似三角形的判定与性质,根据已知得出S△ABC:S△ADE=(AC:AE)2进而求出是解题关键.
找相似题