一次函数综合题;矩形的性质;翻折变换(折叠问题);相似三角形的判定与性质.
(1)证两三角形相似,必须得出两组对应角相等,所求的两个三角形中,已知了一组直角,因此只需找出另一组对应角相等即可得出相似的结论.由于∠CDE为90°,那么∠CDO和∠EDA互余,而∠OCD也和∠CDO互余,因此根据同角的余角相等即可得出∠OCD=∠EDA,由此可证得两三角形相似.
(2)本题的关键是求出C、E点的坐标,根据∠EDA的正切值,可设AE=3t,那么DA=4t,DE=5t.则OC=AE+BE=AE+DE=8t,进而可根据(1)的相似三角形得出的关于OC、CD、AD、DE的比例关系式,来求出CD的值,然后可在直角三角形CDE中求出t的值,即可得出AE、BC的长,即确定了E点的坐标,然后根据C,E两点的坐标求出直线CE的解析式,即可求得直线CE与x轴交点P的坐标.
(3)应该有两条如图
①直线BF,根据折叠的性质可知CE必垂直平分BD,那么∠DGP=∠CGF=90°,而∠CFG=∠DPG(都是∠OCP的余角),由此可得出两三角形相似,那么可根据B、D两点的坐标求出此直线的解析式.
②直线DN,由于∠FCP=∠NDO,那么可根据∠OCE即∠BEC的正切值,求出∠NDO的正切值,然后用OD的长求出ON的值,即可求出N点的坐标,然后根据N、D两点的坐标求出直线DN的解析式.
本题考查了一次函数的应用、图形的翻折变换、矩形的性质、相似三角形的判定和性质等知识点,主要考查学生数形结合的数学思想方法.
压轴题.