二次函数综合题;全等三角形的判定与性质;相似三角形的判定与性质.
(1)可根据PE∥DC,来得出关于AE,AD,AP,AC的比例关系,AD可根据勾股定理求出,那么就能用x表示出AE的长,进而可表示出DE的长;
(2)求三角形EDQ的面积可以QD为底边,以PC为高来求,QD=BD-BQ,而BQ可根据Q的速度用时间表示出来,那么也就能用x表示出QD,而PC就是AC-AP,有了底和高,就可以根据三角形的面积公式得出关于x,y的函数关系式;
(3)因为∠ADB是钝角,因此要想使三角形EDQ是直角三角形,那么Q就必须在CD上,可分两种情况进行讨论:
①当∠EQD=90°时,四边形EPCQ是个矩形,那么EQ=PC,DQ=BQ-BD,根据EQ∥AC可得出关于EQ,AC,DQ,DC的比例关系从而求出x的值.
②当∠DEQ=90°时,可用PC和∠DAC的正弦值来表示出EQ,然后用相似三角形EQD和ABC,得出关于EQ,AC,DQ,AD的比例关系,从而求出x的值.
本题主要考查了解直角三角形的应用,相似三角形的性质以及二次函数等知识点的综合应用,弄清相关线段的大小和比例关系是解题的关键.
压轴题.