试题

题目:
青果学院如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=2,CD=1.下列结论:①∠AED=∠ADC;②
DE
DA
=
1
2
;③AC·BE=2;④BF=2AC;⑤BE=DE.其中结论正确的个数有
①③④⑤
①③④⑤

答案
①③④⑤

青果学院解:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,
∵∠EAD=∠DAC,
∴∠AED=∠ADC.
故本选项正确;
②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,
∴△ADE∽△ACD,得DE:DA=DC:AC=1:AC,
过D做DG⊥AB,DG=CD=1,∴BG=CD=1,
∴BG=
3
,设AG=AC=x,
∴x2+32=(x+
3
2
解得:x=
3

∴DE:DA=DC:AC=1:
3

故此选项错误;
③由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC·BE=BD·DC=2.
故本选项正确;
④连接DM.
在Rt△ADE中,MD为斜边AE的中线,则DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=2:1;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=2:1,
∴BF=2AC.
故本选项正确
⑤由④可知BM:MA=BF:AC=2:1,
∵BD:DC=2:1,
∴DM∥AC,DM⊥BC,
∴∠MDA=∠DAC=∠DAM,而∠ADE=90°,
∴DM=MA=ME,在Rt△BDM中,由BM=2AM可知BE=EM,
∴ED=BE.故⑤正确.
综上所述,①③④⑤正确.
故答案为:①③④⑤.
考点梳理
直角三角形的性质;角平分线的定义;含30度角的直角三角形;相似三角形的判定与性质.
①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;
②易证△ADE∽△ACD,得DE:DA=DC:AC=1:AC,进而得出AC的长,即可得出答案;
③当FC⊥AB时成立;
④连接DM,可证DM∥BF∥AC,得FM:MC=BD:DC=4:3;易证△FMB∽△CMA,得比例线段求解;
⑤BE=DE成立.由④可知BM:MA=BF:AC=2:1,而BD:DC=2:1,可知DM∥AC,DM⊥BC,利用直角三角形斜边上的中线的性质判断.
此题重点考查相似三角形的判定和性质,综合性强,有一定难度.
压轴题;推理填空题.
找相似题