相似三角形的判定与性质;三角形的面积;等腰直角三角形.
(1)由AE平分∠CAB得到∠CAE=∠FAD,易证得Rt△ACE∽Rt△ADF,则AC:AD=AE:AF,变形后即可得到结论;
(2)过E作EM⊥AB于M点,根据角平分线定理可得EM=EC,则Rt△AME≌Rt△ACE,得到AM=AC;再根据平行线分线段成比例定理得到
=
,根据等腰直角三角形的性质得到AM=AC=BC=
AD,EM=
BE,代入上式得到FD=
BE·
=
BE;
(3)过F作FG⊥BC于点G,根据三角形的角平分线相交于一点由CD和AE为△ABC的角平分线得到BF平分∠ABC,则FG=FD=x,再根据三角形的面积公式即可得到y与x的关系.
本题考查了相似三角形的判定与性质:有两个角对应相等的两三角形相似;相似三角形的对应边的比相等.也考查了等腰直角三角形的性质、三角形的面积公式以及角平分线的性质.
证明题.