勾股定理;三角形的面积;直角三角形全等的判定;矩形的性质;相似三角形的判定与性质.
(1)由于△AOB与矩形EOFP有公共部分五边形OEMNF,而不同的部分是△AEM、△BFN和△PMN,若比较△AOB和矩形EOFP的面积大小,只需比较不同部分的面积大小即可,由已知得S△MPN=S△AEM+S△NFB,故两者的面积相等;y与x的函数关系:可根据P点坐标,求出矩形EPFO的面积,根据△AOB和矩形的面积相等,即可得到关于x、y的函数关系式;
(2)将x的值代入题(1)所得的函数关系式中,即可得到y的值,也就确定了P点的坐标;过O作OH⊥AB于H,在等腰Rt△OAB中,通过解直角三角形,可求得AB、OH的长,此时发现OH=OE,则可证得Rt△EMO≌Rt△HMO,由此可得∠1=∠2,同理可证得∠3=∠4,由于∠EOF=90°,则∠2+∠3=∠MON=45°,由此得解.
(3)方法同(2)类似,可用P点的横坐标,分别表示出EM、HN的长,通过证△EMO∽△HNO,得到∠1=∠3,同理可通过证△MHO∽△NFO,得到∠2=∠4,而∠EOF=90°,即可得到∠MON=45°.
此题考查了矩形、等腰直角三角形的性质,全等三角形、相似三角形的判定和性质;(2)(3)题中,通过辅助线来构造出与已知和所求相关的相似或全等三角形,是解答此题的关键.
综合题;数形结合.