题目:
(2010·厦门)设△A
1B
1C
1的面积是S
1,△A
2B
2C
2的面积为S
2(S
1<S
2),当△A
1B
1C
1∽△A
2B
2C
2,且
0.3≤≤0.4时,则称△A
1B
1C
1与△A
2B
2C
2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.
答案

(1)证明:∵AD=DC
∴∠DAC=∠DCA
∵AD∥BC
∴∠DAC=∠ACB
∵∠BCD=60°
∴∠ACD=∠ACB=30°
∵∠B=30°
∴∠DAC=∠B=30°
∴△DAC∽△ABC
过点D作DE⊥AC于点E,
∵AD=DC
∴AC=2EC
在Rt△DEC中
∵∠DCA=30°,cos∠DCA=
=
∴DC=
EC
∴
=
∴
=(
)
2=
≈0.33,
∵0.3
≤≤0.4
∴△DAC与△ABC有一定的“全等度”.
(2)解:△DAC与△ABC有一定的△“全等度”不正确.
反例:若
∠ACB=40°,则△DAC与△ABC不具有一定的“全等度”.
∵∠B=30°,∠BCD=60°,
∴∠BAC=110°
∵AD∥BC
∴∠D=120°
∴△DAC与△ABC不相似
∴若∠ACB=40°,则△DAC与△ABC不具有一定的“全等度”.

(1)证明:∵AD=DC
∴∠DAC=∠DCA
∵AD∥BC
∴∠DAC=∠ACB
∵∠BCD=60°
∴∠ACD=∠ACB=30°
∵∠B=30°
∴∠DAC=∠B=30°
∴△DAC∽△ABC
过点D作DE⊥AC于点E,
∵AD=DC
∴AC=2EC
在Rt△DEC中
∵∠DCA=30°,cos∠DCA=
=
∴DC=
EC
∴
=
∴
=(
)
2=
≈0.33,
∵0.3
≤≤0.4
∴△DAC与△ABC有一定的“全等度”.
(2)解:△DAC与△ABC有一定的△“全等度”不正确.
反例:若
∠ACB=40°,则△DAC与△ABC不具有一定的“全等度”.
∵∠B=30°,∠BCD=60°,
∴∠BAC=110°
∵AD∥BC
∴∠D=120°
∴△DAC与△ABC不相似
∴若∠ACB=40°,则△DAC与△ABC不具有一定的“全等度”.