题目:
(2009·绵阳)如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF=90°,使EF交矩形的外角平分线BF于点F,设C(m,n).
(1)若m=n时,如图,求证:EF=AE;
(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF=AE?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)若m=tn(t>1)时,试探究点E在边OB的何处时,使得EF=(t+1)AE成立?并求出点E的坐标.
答案

解:
(1)由题意得m=n时,AOBC是正方形.
如图,在OA上取点G,使AG=BE,
∵正方形OACB,OA=OB,
∴OG=OE.
∴∠EGO=∠GEO=
(180°-90°)=45°,从而∠AGE=90°+45°=135°.
由BF是外角平分线,得∠EBF=135°,
∴∠AGE=∠EBF.
∵∠AEF=90°,
∴∠FEB+∠AEO=90°.
在Rt△AEO中,∵∠EAO+∠AEO=90°,
∴∠EAO=∠FEB,
在△AGE和△EBF中
∵
∴△AGE≌△EBF,
EF=AE.
(2)假设存在点E,使EF=AE.设E(a,0).作FH⊥x轴于H,如图.
由(1)知∠EAO=∠FEH,于是Rt△AOE≌Rt△EHF.
∴FH=OE,EH=OA.
∴点F的纵坐标为a,即FH=a.
由BF是外角平分线,知∠FBH=45°,
∴BH=FH=a.
又由C(m,n)有OB=m,
∴BE=OB-OE=m-a,
∴EH=m-a+a=m.
又EH=OA=n,
∴m=n,这与已知m≠n相矛盾.
因此在边OB上不存在点E,使EF=AE成立.
(3)如(2)图,设E(a,0),FH=h,则EH=OH-OE=h+m-a.
由∠AEF=90°,∠EAO=∠FEH,得△AOE∽△EHF,

∴EF=(t+1)AE等价于FH=(t+1)OE,即h=(t+1)a,
且
=,即
=,
整理得nh=ah+am-a
2,
∴h=
=.
把h=(t+1)a代入得
=(t+1)a,
即m-a=(t+1)(n-a).
而m=tn,因此tn-a=(t+1)(n-a).
化简得ta=n,解得a=
.
∵t>1,
∴
<n<m,
故E在OB边上.
∴当E在OB边上且离原点距离为
处时满足条件,此时E(
,0).

解:
(1)由题意得m=n时,AOBC是正方形.
如图,在OA上取点G,使AG=BE,
∵正方形OACB,OA=OB,
∴OG=OE.
∴∠EGO=∠GEO=
(180°-90°)=45°,从而∠AGE=90°+45°=135°.
由BF是外角平分线,得∠EBF=135°,
∴∠AGE=∠EBF.
∵∠AEF=90°,
∴∠FEB+∠AEO=90°.
在Rt△AEO中,∵∠EAO+∠AEO=90°,
∴∠EAO=∠FEB,
在△AGE和△EBF中
∵
∴△AGE≌△EBF,
EF=AE.
(2)假设存在点E,使EF=AE.设E(a,0).作FH⊥x轴于H,如图.
由(1)知∠EAO=∠FEH,于是Rt△AOE≌Rt△EHF.
∴FH=OE,EH=OA.
∴点F的纵坐标为a,即FH=a.
由BF是外角平分线,知∠FBH=45°,
∴BH=FH=a.
又由C(m,n)有OB=m,
∴BE=OB-OE=m-a,
∴EH=m-a+a=m.
又EH=OA=n,
∴m=n,这与已知m≠n相矛盾.
因此在边OB上不存在点E,使EF=AE成立.
(3)如(2)图,设E(a,0),FH=h,则EH=OH-OE=h+m-a.
由∠AEF=90°,∠EAO=∠FEH,得△AOE∽△EHF,

∴EF=(t+1)AE等价于FH=(t+1)OE,即h=(t+1)a,
且
=,即
=,
整理得nh=ah+am-a
2,
∴h=
=.
把h=(t+1)a代入得
=(t+1)a,
即m-a=(t+1)(n-a).
而m=tn,因此tn-a=(t+1)(n-a).
化简得ta=n,解得a=
.
∵t>1,
∴
<n<m,
故E在OB边上.
∴当E在OB边上且离原点距离为
处时满足条件,此时E(
,0).