试题
题目:
如图,平面上有四个点A、B、C、D,根据下列语句画图.
(1)画直线AB;
(2)作射线BC;
(3)画线段CD;
(4)连接AD,并将其反向延长至E,使DE=2AD;
(5)找到一点F,使点F到A、B、C、D四点距离和最短.
答案
解:
解:
考点梳理
考点
分析
点评
作图—基本作图.
(1)画直线AB,连接AB并向两方无限延长;
(2)画射线BC,以B为端点向BC方向延长;
(3)画线段C D,连接CD即可;
(4)连接AD,并将其反向延长至E,使DE=2AD;
(5)连接AC、BD,其交点即为点F.
根据直线、射线、线段的概念,利用作图工具作图,需要同学们有一定的理解力.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
在如图中,补充作图:
(1)在AD的右侧作∠DCP=∠DAB(尺规作图,不写作法,保留作图痕迹);
(2)CP与AB会平行吗?为什么?
作图,如图已知三角形ABC内一点P
(1)过P点作线段EF∥AB,分别交BC,AC于点E,F
(2)过P点作线段PD使PD⊥BC垂足为D点.
如图,
(1)过点P画直线PM平行于直线BC.
(2)量出PM与BC的距离.
如图:已知:∠AOB和OB上的一点P.
求作:直线MN,使直线MN过点P且MN∥OA.