试题
题目:
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
A.a=b
B.2a+b=-1
C.2a-b=1
D.2a+b=1
答案
B
解:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,
故2a+b+1=0,
整理得:2a+b=-1,
故选:B.
考点梳理
考点
分析
点评
专题
作图—基本作图;坐标与图形性质;角平分线的性质.
根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.
此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.
压轴题.
找相似题
在如图中,补充作图:
(1)在AD的右侧作∠DCP=∠DAB(尺规作图,不写作法,保留作图痕迹);
(2)CP与AB会平行吗?为什么?
作图,如图已知三角形ABC内一点P
(1)过P点作线段EF∥AB,分别交BC,AC于点E,F
(2)过P点作线段PD使PD⊥BC垂足为D点.
如图,
(1)过点P画直线PM平行于直线BC.
(2)量出PM与BC的距离.
如图:已知:∠AOB和OB上的一点P.
求作:直线MN,使直线MN过点P且MN∥OA.
用圆规、直尺作图,不写作法,但要保留作图痕迹.
为美化校园,学校准备修建一个面积最小的圆形花坛来覆盖住如图所示的△ABC(∠BAC为钝角)空地,请在图中作出这个圆.