试题

题目:
若a、c、d是整数,b是正整数,且满足a+b=c,b+c=d,c+d=a,那么a+b+c+d的最大值是(  )



答案
B
解:∵a+b=c,
∴a=c-b,
又∵b+c=d,c+d=a,a=c-b,
∴c=-2b,a=-3b,d=-b,
∴a+b+c+d=-5b,
∵b是正整数,其最小值为1,
∴a+b+c+d=-5b的最大值是-5.
故选B.
考点梳理
解三元一次方程组.
根据题意得
a=-3b
c=-2b
d=-b
,代入a+b+c+d=-5b,已知b是正整数,其最小值为1,于是a+b+c+d=-5b的最大值是-5.
本题的实质是考查三元一次方程组的解法.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.
计算题.
找相似题