试题
题目:
观察下列各式:
3
2
+3=
3
2
×3
,
4
3
+4=
4
3
×4
,
5
4
+5=
5
4
×5
,…,
n+1
n
+n+1=
n+1
n
×(n+1)
n+1
n
+n+1=
n+1
n
×(n+1)
.
答案
n+1
n
+n+1=
n+1
n
×(n+1)
解:∵
3
2
+3=
3
2
×3
,
4
3
+4=
4
3
×4
,
5
4
+5=
5
4
×5
,
…,
∴
n+1
n
+n+1=
n+1
n
×(n+1)
,
故答案为:
n+1
n
+n+1=
n+1
n
×(n+1)
..
考点梳理
考点
分析
点评
规律型:数字的变化类.
仔细观察题目给出的三个算式,仔细找到等式两边的分子和分母之间的关系即可得到规律.
本题考查了数字的变化类问题,解题的关键是仔细观察各个算式,从中找到规律即可.
找相似题
(2013·南平)给定一列按规律排列的数:
1
2
,
2
5
,
3
10
,
4
17
,…
,则这列数的第6个数是( )
(2011·綦江县)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中 所填整数之和都相等,则第2011个格子中的数为( )
3
a
b
c
-1
2
…
(2011·济南)观察下列各式:
(1)1=1
2
;(2)2+3+4=3
2
;(3)3+4+5+6+7=5
2
;(4)4+5+6+7+8+9+10=7
2
; …
请你根据观察得到的规律判断下列各式正确的是( )
(2010·永州)将一个正整数n输入一台机器内会产生出
n(n+1)
2
的个位数字.若给该机器输入初始数a,将所产生的第一个数字记为a
1
;再输入a
1
,将所产生的第二个数字记为a
2
;…;依此类推.现输入a=2,则a
2010
是( )
(2010·深圳)观察下来算式,用你所发现的规律得出2
2010
的末位数字是( )
2
1
=2,2
2
=4,2
3
=8,2
4
=16,2
5
=32,2
6
=64,2
7
=128,2
8
=256,