试题

题目:
若n为正整数,观察下列各式:
1
1×3
=
1
2
(1-
1
3
)
1
3×3
=
1
2
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)
,…根据观察计算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
19×21
=
10
21
10
21

答案
10
21

解:原式=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)+…+
1
2
1
19
-
1
21

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
19
-
1
21

=
1
2
(1-
1
21

=
1
2
×
20
21

=
10
21

故答案为
10
21
考点梳理
规律型:数字的变化类.
根据题中的等式得到原式=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)+…+
1
2
1
19
-
1
21
),再运用乘法的分配律得原式=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
19
-
1
21
),然后计算括号内的加减运算,再进行乘法运算即可.
本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
规律型.
找相似题