试题
题目:
探索规律
观察下面由※组成的图案和算式,解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+19=
100
100
;
(2)请猜想1+3+5+7+9+…+(2n-1)=
n
2
n
2
;
(3)请用上述规律计算:
103+105+107+…+203+205.
答案
100
n
2
解:(1)∵1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
∴1+3+5+7+9+…+19=10
2
=100;
(2)1+3+5+7+9+…+(2n-1)=n
2
;
(3)103+105+107+…+203+205
=(1+3+5+…+203+205)-(1+3+5+…+99+101),
=103
2
-51
2
,
=10609-2601,
=8008.
故答案为:100;n
2
.
考点梳理
考点
分析
点评
规律型:数字的变化类.
(1)根据已知得出连续奇数之和等于数字个数的平方,进而得出答案;
(2)根据已知得出连续奇数之和等于数字个数的平方,进而得出答案;
(3)根据题意得出原式=(1+3+5+…+203+205)-(1+3+5+…+99+101),进而求出即可.
此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.
找相似题
(2013·南平)给定一列按规律排列的数:
1
2
,
2
5
,
3
10
,
4
17
,…
,则这列数的第6个数是( )
(2011·綦江县)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中 所填整数之和都相等,则第2011个格子中的数为( )
3
a
b
c
-1
2
…
(2011·济南)观察下列各式:
(1)1=1
2
;(2)2+3+4=3
2
;(3)3+4+5+6+7=5
2
;(4)4+5+6+7+8+9+10=7
2
; …
请你根据观察得到的规律判断下列各式正确的是( )
(2010·永州)将一个正整数n输入一台机器内会产生出
n(n+1)
2
的个位数字.若给该机器输入初始数a,将所产生的第一个数字记为a
1
;再输入a
1
,将所产生的第二个数字记为a
2
;…;依此类推.现输入a=2,则a
2010
是( )
(2010·深圳)观察下来算式,用你所发现的规律得出2
2010
的末位数字是( )
2
1
=2,2
2
=4,2
3
=8,2
4
=16,2
5
=32,2
6
=64,2
7
=128,2
8
=256,