试题

题目:
观察下列计算过程:
1-
1
22
=1-
1
4
=
3
4
=
1
2
×
3
2

1-
1
32
=1-
1
9
=
8
9
=
2
3
×
4
3

1-
1
42
=1-
1
16
=
15
16
=
3
4
×
5
4


你能得出什么结论?用得到的结论计算:(1-
1
22
)(1-
1
32
)…(1-
1
20072
)(1-
1
20082
).
答案
解:∵1-
1
22
=1-
1
4
=
3
4
=
1
2
×
3
2

1-
1
32
=1-
1
9
=
8
9
=
2
3
×
4
3

1-
1
42
=1-
1
16
=
15
16
=
3
4
×
5
4


∴第n个式子为:1-
1
(n+1)2
=
n
n+1
×
n+2
n+1

(1-
1
22
)(1-
1
32
)…(1-
1
20072
)(1-
1
20082

=
1
2
×
3
2
×
2
3
×
4
3
×
3
4
×
5
4
×…
2006
2007
×
2008
2007
×
2007
2008
×
2009
2008

=
1
2
×
2009
2008

=
2009
4016

解:∵1-
1
22
=1-
1
4
=
3
4
=
1
2
×
3
2

1-
1
32
=1-
1
9
=
8
9
=
2
3
×
4
3

1-
1
42
=1-
1
16
=
15
16
=
3
4
×
5
4


∴第n个式子为:1-
1
(n+1)2
=
n
n+1
×
n+2
n+1

(1-
1
22
)(1-
1
32
)…(1-
1
20072
)(1-
1
20082

=
1
2
×
3
2
×
2
3
×
4
3
×
3
4
×
5
4
×…
2006
2007
×
2008
2007
×
2007
2008
×
2009
2008

=
1
2
×
2009
2008

=
2009
4016
考点梳理
规律型:数字的变化类.
根据已知数据的变化规律得出第n个式子为:1-
1
(n+1)2
=
n
n+1
×
n+2
n+1
,进而代入算式求出即可.
此题主要考查了数字变化规律,根据已知得出数字中的变与不变是解题关键.
找相似题