试题
题目:
如图,⊙O是Rt△ABC中以直角边AB为直径的圆,⊙O与斜边AC交于D,过D作DH⊥AB于
H,又过D作直线DE交BC于点E,使∠HDE=2∠A.
求证:(1)DE是⊙O的切线;(2)OE是Rt△ABC的中位线.
答案
解:(1)连接OD,
则∠HOD=2∠A,
已知∠HDE=2∠A,
则∠HOD=∠HDE,
∵HD⊥AB,
∴∠HOD+∠HDO=90°,
∴∠HDE+∠HDO=90°,
即OD⊥DE,
又OD是半径,
∴DE是⊙O的切线;
(2)∵DE是⊙O的切线,∠ABC=90°,
∴∠OBE=∠ODE=90°,
又OB=OD,OE=OE,
∴Rt△BOE≌Rt△DOE,
∴∠BOE=∠DOE,
∴∠HOD=∠BOE+∠DOE=2∠BOE,
又∠HOD=2∠A,
∴∠BOE=∠A,
∴OE∥AD,
而O是AB的中点,
故OE是Rt△ABC的中位线.
解:(1)连接OD,
则∠HOD=2∠A,
已知∠HDE=2∠A,
则∠HOD=∠HDE,
∵HD⊥AB,
∴∠HOD+∠HDO=90°,
∴∠HDE+∠HDO=90°,
即OD⊥DE,
又OD是半径,
∴DE是⊙O的切线;
(2)∵DE是⊙O的切线,∠ABC=90°,
∴∠OBE=∠ODE=90°,
又OB=OD,OE=OE,
∴Rt△BOE≌Rt△DOE,
∴∠BOE=∠DOE,
∴∠HOD=∠BOE+∠DOE=2∠BOE,
又∠HOD=2∠A,
∴∠BOE=∠A,
∴OE∥AD,
而O是AB的中点,
故OE是Rt△ABC的中位线.
考点梳理
考点
分析
点评
专题
切线的判定;三角形中位线定理.
(1)连接OD,利用同弧所对的圆周角等于所对圆心角的一半,得到∠HOD=2∠A,然后用等量代换得到∠ODE=90°,证明DE是⊙O的切线.
(2)利用(1)的结论有∠ODE=90°,又已知∠OBE=90°,证明△BOE≌△DOE,得到∠BOE=∠A,所以OE∥AD,得到点E是BC的中点,可以证明OE是△ABC的中位线.
本题考查的是切线的判定,(1)利用同弧所对的圆周角和圆心角的关系,以及等量代换求出∠ODE的度数,证明DE是⊙O的切线.(2)利用(1)的结论证明两三角形全等,得到相等的角度,再用同位角相等两直线平行和三角形中位线的性质证明OE是△ABC的中位线.
证明题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )