切线的判定;勾股定理;三角形中位线定理;平行线分线段成比例.
(1)连CD,利用勾股定理求出AB=8,根据含30°的直角三角形三边的关系得到∠ABC=30°,∠BAC=60°,则∠ODA=60°;而AC为直径,根据圆周角定理的推论得到△CDB为直角三角形,而E点为斜边BC的中点,再根据直角三角形斜边上的中线等于斜边的一半得到DE=BE=EC,则∠BDE=∠DBE=30°,易得到∠ODE=90°,根据切线的判定定理即可得到结论;
(2)连OE,先求出BD,再利用勾股定理计算出OE;根据三角形中位线的性质得到OE∥AB,然后根据平行线分线段成比例定理得到EF:FD=OE:BD,即可得到EF:FD的值.
本题考查了切线的判定定理:过半径的外端点与半径垂直的直线是圆的切线.也考查了勾股定理、圆周角定理的推论、三角形的中位线性质以及平行线分线段成比例定理.
证明题;压轴题.