试题
题目:
已知:如图,在⊙O中,弦CD垂直直径AB,垂足为M,AB=4,CD=
2
3
,点E在AB的延长线上,且
tanE=
3
3
.求证:DE是⊙O的切线.
答案
证明:连接OD.
∵弦CD⊥直径AB,AB=4,CD=
2
3
,
∴MD=
1
2
CD
=
3
,OD=
1
2
AB
=2.
在Rt△OMD中,
∵sin∠DOM=
MD
OD
=
3
2
,
∴∠DOM=60°.
在Rt△DME中,
∵
tanE=
3
3
,
∴∠E=30°.
∴∠ODE=90°.
又∵OD是⊙O的半径,
∴DE是⊙O的切线.
证明:连接OD.
∵弦CD⊥直径AB,AB=4,CD=
2
3
,
∴MD=
1
2
CD
=
3
,OD=
1
2
AB
=2.
在Rt△OMD中,
∵sin∠DOM=
MD
OD
=
3
2
,
∴∠DOM=60°.
在Rt△DME中,
∵
tanE=
3
3
,
∴∠E=30°.
∴∠ODE=90°.
又∵OD是⊙O的半径,
∴DE是⊙O的切线.
考点梳理
考点
分析
点评
专题
切线的判定.
连接OD.根据垂径定理,得DM=
1
2
CD
=
3
,在直角三角形ODM和直角三角形DME中,利用锐角三角函数分别求得∠DOM和∠E的度数,从而求得∠ODE的度数,即可证明DE是圆的切线.
此题综合运用了垂径定理、锐角三角函数和切线的判定定理.
证明题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )