试题
题目:
(2009·宾阳县二模)如图,AB为半圆O的直径,D、E是半圆上的两点,且BD平分∠ABE,过点D作BE延长线的垂线,垂足为
C,直线CD交BA的延长线于点F.
(1)求证:直线CD是半圆O的切线;
(2)若FA=2,OA=3,求BC的长.
答案
解:(1)(5分)证明:连接OD
∵OD=OB
∴∠ABD=∠BDO(1分)
又∵BD平分∠ABE
∴∠CBD=∠ABD
∴∠CBD=∠BDO(1分)
∴OD∥BC(1分)
∵CD⊥BC
∴DC⊥OD(1分)
∴直线CD是半圆O的切线(1分)
(2)(5分)解:∵OD∥BC
∴△FOD∽△FBC(1分)
∴
OD
BC
=
FO
FB
(2分)
∴
3
BC
=
5
8
(1分)
∴BC=
24
5
=4.8
(1分)
解:(1)(5分)证明:连接OD
∵OD=OB
∴∠ABD=∠BDO(1分)
又∵BD平分∠ABE
∴∠CBD=∠ABD
∴∠CBD=∠BDO(1分)
∴OD∥BC(1分)
∵CD⊥BC
∴DC⊥OD(1分)
∴直线CD是半圆O的切线(1分)
(2)(5分)解:∵OD∥BC
∴△FOD∽△FBC(1分)
∴
OD
BC
=
FO
FB
(2分)
∴
3
BC
=
5
8
(1分)
∴BC=
24
5
=4.8
(1分)
考点梳理
考点
分析
点评
专题
切线的判定;平行线的性质;三角形的稳定性;相似三角形的判定与性质.
(1)连接OD,通过证明OD∥BC得出结论.
(2)证明△FOD∽△FBC,再根据相似三角形的性质求出BC的长.
本题综合考查了切线的判定,相似三角形的判定和性质,会利用比例求线段的长.
几何综合题;压轴题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )