试题
题目:
(2009·同安区质检)如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交⊙O于点D.
(1)求证:BD是⊙O的切线;
(2)若AB=6,求线段DB的长.
答案
(1)证明:∵OA=OD,
∴∠ADO=∠A=30°,
∴∠DOB=∠ADO+∠BAD=60°,
∴∠ODB=180°-∠DOB-∠B=90°,
即OD⊥DB,
∴BD是⊙O的切线;
(2)解:设AO=x,则DO=AO=x,OB=6-x,
∵在Rt△ODB中,∠B=30°
∴OD=
1
2
OB,
∴x=
1
2
(6-x),
解得:x=2,
∴OD=2,OB=4,
∴BD=
B
O
2
-O
D
2
=2
3
.
(1)证明:∵OA=OD,
∴∠ADO=∠A=30°,
∴∠DOB=∠ADO+∠BAD=60°,
∴∠ODB=180°-∠DOB-∠B=90°,
即OD⊥DB,
∴BD是⊙O的切线;
(2)解:设AO=x,则DO=AO=x,OB=6-x,
∵在Rt△ODB中,∠B=30°
∴OD=
1
2
OB,
∴x=
1
2
(6-x),
解得:x=2,
∴OD=2,OB=4,
∴BD=
B
O
2
-O
D
2
=2
3
.
考点梳理
考点
分析
点评
切线的判定;含30度角的直角三角形;勾股定理.
(1)求出∠A=∠ADO=30°,求出∠DOB=60°,根据三角形内角和定理求出∠ODB=90°,根据切线的判定推出即可;
(2)设AO=x,则DO=AO=x,OB=6-x,根据含30度角的直角三角形性质得出OB=2OD,推出方程x=
1
2
(6-x),求出x,求出OD、OB,根据勾股定理求出即可.
本题考查了勾股定理,切线的判定,含30度角的直角三角形性质,主要考查学生的推理能力和计算能力.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )