试题
题目:
(2011·甘井子区模拟)如图,在Rt△ABC中,∠ABC=90°,以AB为直径作半圆O,交斜边AC于点D.
(1)若AD=3,AB=5,求BC的长;
(2)取BC的中点E,连接ED,试证明ED与⊙O相切.
答案
(1)解:连接BD
方法一:∵AB为直径,
∴∠ADB=90°,(1分)
∵AD=3,AB=5,
∴BD=4,(2分)
在Rt△ABD中,tan∠ABD=
AD
BD
=
3
4
,
又∵∠ABD=∠ACB,
tan∠ACB=
3
4
=
AB
BC
,(3分)
∴
BC=
4·AB
3
=
20
3
,(4分)
方法二:∵AB为直径,
∴∠ADB=90°,(1分)
∵∠ABC=90°,
∴∠ADB=∠ABC,
又∵∠DAB=∠BAC,
∴△DAB∽△BAC,(2分)
∴
AD
AB
=
BD
BC
,
∴
AD
AB
=
BD
BC
,
∴
3
5
=
4
BC
,
∴
BC=
20
3
;(4分)
(2)证明:
方法一:连接OD,
∵∠ADB=90°,
∴∠CDB=90°,
∵点E是BC的中点,
∴DE=BE,
∴∠EDB=∠EBD,(5分)
∵OB=OD,
∴∠ODB=∠OBD,(6分)
∴∠ODB+∠EDB=∠OBD+∠EBD=90°,(7分)
即OD⊥ED,(8分)
∴ED与⊙O相切.(9分)
方法二:连接OE,OD,
∵是BC的中点,∠BDC=90°,
∴DE=BE,(5分)
又∵OD=OB,OE=OE,
∴△ODE≌△OBE,(6分)
∴∠ODE=∠OBE=90°,(7分)
即OD⊥ED,(8分)
∵D在⊙O上,
∴ED与⊙O相切.(9分)
(1)解:连接BD
方法一:∵AB为直径,
∴∠ADB=90°,(1分)
∵AD=3,AB=5,
∴BD=4,(2分)
在Rt△ABD中,tan∠ABD=
AD
BD
=
3
4
,
又∵∠ABD=∠ACB,
tan∠ACB=
3
4
=
AB
BC
,(3分)
∴
BC=
4·AB
3
=
20
3
,(4分)
方法二:∵AB为直径,
∴∠ADB=90°,(1分)
∵∠ABC=90°,
∴∠ADB=∠ABC,
又∵∠DAB=∠BAC,
∴△DAB∽△BAC,(2分)
∴
AD
AB
=
BD
BC
,
∴
AD
AB
=
BD
BC
,
∴
3
5
=
4
BC
,
∴
BC=
20
3
;(4分)
(2)证明:
方法一:连接OD,
∵∠ADB=90°,
∴∠CDB=90°,
∵点E是BC的中点,
∴DE=BE,
∴∠EDB=∠EBD,(5分)
∵OB=OD,
∴∠ODB=∠OBD,(6分)
∴∠ODB+∠EDB=∠OBD+∠EBD=90°,(7分)
即OD⊥ED,(8分)
∴ED与⊙O相切.(9分)
方法二:连接OE,OD,
∵是BC的中点,∠BDC=90°,
∴DE=BE,(5分)
又∵OD=OB,OE=OE,
∴△ODE≌△OBE,(6分)
∴∠ODE=∠OBE=90°,(7分)
即OD⊥ED,(8分)
∵D在⊙O上,
∴ED与⊙O相切.(9分)
考点梳理
考点
分析
点评
相似三角形的判定与性质;圆周角定理;切线的判定.
(1)连接BD,根据AB为直径即可证明∠ADB=∠ABC=90°,证明△DAB∽△BAC,根据相似三角形对应边的比相等即可求解;
(2)证明ED与⊙O相切,即可连接OD证明OD⊥DE即可.
本题主要考查了相似三角形的性质,以及切线的判定,切线的判定常用的方法是利用切线的判定定理转化为证明垂直的问题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )