试题
题目:
如图,半圆O为△ABC的外接圆,AC为直径,D为劣弧BC上一动点,P在CB延长线上,且满足∠BAP=∠BDA
,
(1)求证:AP为⊙O切线;
(2)若四边形ABDO为菱形,求证:BD
2
=BE·BC.
答案
解:(1)∵∠BDA和∠BCA为同弧所对的圆周角,
∴∠BDA=∠BCA.
又AC为直径,
∴∠ABC=90°.
即∠ACB+∠BAC=90°.
又∠BAP=∠BDA,
∴∠BAP+∠BAC=90°.
即AP为切线.
(2)∵四边形ABDO为菱形,
∴AB=BD.
∴∠BAD=∠BDA.
又∵∠BDA和∠BCA为同弧所对圆周角,
∴∠BDA=∠BCA.
∴∠BAD=∠BDA=∠BCA.
∵∠ABC=∠EBA,
∴△ABC∽△EBA.
∴
AB
BE
=
BC
AB
.
∵AB=BD.
∴
BD
BE
=
BC
BD
.
即BD
2
=BE·BC.
解:(1)∵∠BDA和∠BCA为同弧所对的圆周角,
∴∠BDA=∠BCA.
又AC为直径,
∴∠ABC=90°.
即∠ACB+∠BAC=90°.
又∠BAP=∠BDA,
∴∠BAP+∠BAC=90°.
即AP为切线.
(2)∵四边形ABDO为菱形,
∴AB=BD.
∴∠BAD=∠BDA.
又∵∠BDA和∠BCA为同弧所对圆周角,
∴∠BDA=∠BCA.
∴∠BAD=∠BDA=∠BCA.
∵∠ABC=∠EBA,
∴△ABC∽△EBA.
∴
AB
BE
=
BC
AB
.
∵AB=BD.
∴
BD
BE
=
BC
BD
.
即BD
2
=BE·BC.
考点梳理
考点
分析
点评
专题
切线的判定;菱形的性质;相似三角形的判定与性质.
(1)因为∠BDA和∠BCA为同弧所对的圆周角,所以相等,又AC为直径,所以∠ABC=90°,即∠ACB+∠BAC=90°,又∠BAP=∠BDA,所以∠BAP+∠BAC=90°,即AP为切线.
(2)证BD
2
=BE·BC,即
BD
BE
=
BC
BD
,而若四边形ABDO为菱形,那么AB=BD,所以有
AB
BE
=
BC
AB
,即证△ABC∽△ABE即可,
此题综合考查了切线的判定以及相似三角形的判定方法的运用.
证明题;动点型.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )