试题
题目:
如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,以AB为直径的⊙O交AC于D,E为BC的中点.
(1)求线段CD的长;
(2)求证:DE是⊙O的切线.
答案
(1)解:连接BD,如图.
∵在Rt△ABC中,AB=6,BC=8,
∴
AC=
6
2
+
8
2
=10
(1分)
又∵AB为直径,
∴BD⊥AC,
∴△BDC∽△ABC,
∴
CD
BC
=
BC
AC
,即
CD
8
=
8
10
,
∴CD=6.4;
(2)证明:连接OD,
∵OD=OB,
∴∠1=∠2,
∵在Rt△BDC中,E为BC的中点,
∴
DE=BE=
1
2
BC
,
∴∠EDB=∠EBD,
又∵∠ABC=90°,
∴∠2+∠EBD=90°
∴∠1+∠EDB=∠2+∠EBD=90°,即∠ODE=90°
∴ED为⊙O的切线.
(1)解:连接BD,如图.
∵在Rt△ABC中,AB=6,BC=8,
∴
AC=
6
2
+
8
2
=10
(1分)
又∵AB为直径,
∴BD⊥AC,
∴△BDC∽△ABC,
∴
CD
BC
=
BC
AC
,即
CD
8
=
8
10
,
∴CD=6.4;
(2)证明:连接OD,
∵OD=OB,
∴∠1=∠2,
∵在Rt△BDC中,E为BC的中点,
∴
DE=BE=
1
2
BC
,
∴∠EDB=∠EBD,
又∵∠ABC=90°,
∴∠2+∠EBD=90°
∴∠1+∠EDB=∠2+∠EBD=90°,即∠ODE=90°
∴ED为⊙O的切线.
考点梳理
考点
分析
点评
专题
切线的判定;相似三角形的判定与性质.
(1)连接BD,在Rt△ABC中,解得AC,由三角形相似求得CD,
(2)连接OD,由OD=OB,知∠1=∠2,在Rt△BDC中,E为BC的中点,求得∠EDB=∠EBD,最终证明∠ODE=90°.
本题考查了切线的判定,相似三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
几何综合题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )