试题
题目:
如图,已知矩形ABCD,AP⊥AC交BD的延长线于P,点E在AP上,以AE为直径的⊙O正好过D点.
(1)判断BD与⊙O的位置关系,并予以证明;
(2)若PE=1,PD=2,求⊙O的半径长.
答案
(1)BD与⊙O相切.
证明:连接OD;
由矩形ABCD可知∠DAC=∠ADB,
∵OA=OD,
∴∠OAD=∠ODA,
∵AP⊥AC,
∴∠ODA+∠ADB=∠OAC=90°,
∴∠ODB=90°,
∴BD与⊙O相切.
(2)解:设半径为r,
由切割线定理PD
2
=PE×PA,
解得r=
3
2
.
(1)BD与⊙O相切.
证明:连接OD;
由矩形ABCD可知∠DAC=∠ADB,
∵OA=OD,
∴∠OAD=∠ODA,
∵AP⊥AC,
∴∠ODA+∠ADB=∠OAC=90°,
∴∠ODB=90°,
∴BD与⊙O相切.
(2)解:设半径为r,
由切割线定理PD
2
=PE×PA,
解得r=
3
2
.
考点梳理
考点
分析
点评
专题
切线的判定.
(1)连接OD,由矩形ABCD可知∠DAC=∠ADB,又知∠OAD=∠ODA,故可得∠ODB=90°,
(2)设半径为r,由切割线定理PD
2
=PE×PA,解得r.
本题考查了切线的判定等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
计算题;证明题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )