试题
题目:
(2012·丰润区一模)如图,已知⊙O的直径AB与弦CD相互垂直,垂足为点E,过点B作CD的平行线与弦AD的延长线相交于点F,且AD=3,cos∠BCD=
3
4
.
(1)求证:BF为⊙O的切线.
(2)求⊙O的半径.
答案
(1)证明:∵AB⊥CD,BF∥CD,
∴AB⊥BF,
∵AB是⊙O的直径,
∴BF为⊙O的切线;
(2)解:连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠BCD=∠BAD,cos∠BCD=
3
4
,
∴cos∠BAD=
AD
AB
=
3
4
,
∵AD=3,
∴AB=4,
∴⊙O的半径为2.
(1)证明:∵AB⊥CD,BF∥CD,
∴AB⊥BF,
∵AB是⊙O的直径,
∴BF为⊙O的切线;
(2)解:连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠BCD=∠BAD,cos∠BCD=
3
4
,
∴cos∠BAD=
AD
AB
=
3
4
,
∵AD=3,
∴AB=4,
∴⊙O的半径为2.
考点梳理
考点
分析
点评
切线的判定;圆周角定理;解直角三角形.
(1)由AB⊥CD,BF∥CD,可得AB⊥BF,又由AB是⊙O的直径,即可证得BF为⊙O的切线;
(2)首先连接BD,由AB是⊙O的直径,可得∠ADB是直角,又由AD=3,cos∠BCD=
3
4
,即可得cos∠BAD=
AD
AB
=
3
4
,继而求得答案.
此题考查了切线的判定、圆周角定理以及锐角三角函数的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与转化思想的应用.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )