试题
题目:
如图所示,AB是⊙O直径,OD过弦BC的中点F,且交⊙O于点E,若∠AEC=∠ODB.求证:直线BD和⊙O相切.
答案
证明:连接AC,
∴∠AEC=∠ABC,
∵∠AEC=∠ODB,
∴∠ODB=∠ABC.
∵O,F分别是AB,BC的中点,
∴AC∥OD,
∴∠BOD=∠BAC.
∵∠BAC+∠ABC=90°,
∴∠ODB+∠BOD=90°.
∴OB⊥BD,即直线BD和⊙O相切.
证明:连接AC,
∴∠AEC=∠ABC,
∵∠AEC=∠ODB,
∴∠ODB=∠ABC.
∵O,F分别是AB,BC的中点,
∴AC∥OD,
∴∠BOD=∠BAC.
∵∠BAC+∠ABC=90°,
∴∠ODB+∠BOD=90°.
∴OB⊥BD,即直线BD和⊙O相切.
考点梳理
考点
分析
点评
专题
切线的判定.
要证直线BD和⊙O相切,通过∠BOD=∠BAC,因为∠BAC+∠ABC=90°,所以证明OB⊥BD即可.
熟练掌握切线的性质及判定.
证明题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )