试题
题目:
(2013·邵东县模拟)如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°,
求证:CD是⊙O的切线.
答案
证明:连接OD,
∵∠AOD与∠AED都对
AD
,∠AED=45°,
∴∠AOD=2∠AED=90°,
∵四边形ABCD为平行四边形,
∴CD∥AB,
∴∠ODC=∠AOD=90°,
∴DC⊥OD,
则CD为圆O的切线.
证明:连接OD,
∵∠AOD与∠AED都对
AD
,∠AED=45°,
∴∠AOD=2∠AED=90°,
∵四边形ABCD为平行四边形,
∴CD∥AB,
∴∠ODC=∠AOD=90°,
∴DC⊥OD,
则CD为圆O的切线.
考点梳理
考点
分析
点评
专题
切线的判定;平行四边形的性质.
连接OD,由同弧所对的圆心角等于圆周角的2倍求出∠AOD为直角,再由平行四边形的对边平行得到DC与AB平行,利用两直线平行内错角相等得到∠ODC为直角,即DC垂直于OD,即可确定出DC为圆的切线.
此题考查了切线的判定,涉及的知识有:圆周角定理,平行四边形的性质,以及平行线的性质,熟练掌握切线的判定方法是解本题的关键.
证明题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )