试题
题目:
(2013·同安区一模)如图,AB为⊙O的直径,BC、CD是弦,过点B作BE⊥CD交弦CD 的延长线于E,连结OC,∠BOC=2∠CBE.
(1)求证:BE是⊙O的切线;
(2)若CD=6,∠COB=120°,求
BD
的长.
答案
(1)方法一:
证明:∵OB=OC
∴∠OBC=∠OCB,
∵∠OBC+∠OCB+∠COB=180°,
∠BOC=2∠CBE,
∴2∠OBC+2∠CBE=180°,
∴∠OBC+∠CBE=90°,
∴OB⊥BE,
∵点B在⊙O上,
∴BE是⊙O的切线.
方法二:
证明:连接AC
∵AB为⊙O的直径,
∴∠BCA=90°.
∴∠BAC+∠CBA=90°,
∵∠BOC=2∠CBE,
∠BOC=2∠BAC,
∴∠BAC=∠CBE,
∴∠CBE+∠CBA=90°,
∴OB⊥BE,
∵点B在⊙O上,
∴BE是⊙O的切线.
(2)解:连结OD.
∵∠COB=120°,
∠BOC=2∠CBE,
∴∠CBE=60°,
∵BE⊥CD,
∴∠CEB=90°,
∴∠BCE=30°,
∴∠BOD=60°,
∴∠COD=60°,
∵OC=OD,
∴△OCD是等边三角形,
∴OD=CD=6,
∴
BD
=
60π×6
180
=2π
.
(1)方法一:
证明:∵OB=OC
∴∠OBC=∠OCB,
∵∠OBC+∠OCB+∠COB=180°,
∠BOC=2∠CBE,
∴2∠OBC+2∠CBE=180°,
∴∠OBC+∠CBE=90°,
∴OB⊥BE,
∵点B在⊙O上,
∴BE是⊙O的切线.
方法二:
证明:连接AC
∵AB为⊙O的直径,
∴∠BCA=90°.
∴∠BAC+∠CBA=90°,
∵∠BOC=2∠CBE,
∠BOC=2∠BAC,
∴∠BAC=∠CBE,
∴∠CBE+∠CBA=90°,
∴OB⊥BE,
∵点B在⊙O上,
∴BE是⊙O的切线.
(2)解:连结OD.
∵∠COB=120°,
∠BOC=2∠CBE,
∴∠CBE=60°,
∵BE⊥CD,
∴∠CEB=90°,
∴∠BCE=30°,
∴∠BOD=60°,
∴∠COD=60°,
∵OC=OD,
∴△OCD是等边三角形,
∴OD=CD=6,
∴
BD
=
60π×6
180
=2π
.
考点梳理
考点
分析
点评
切线的判定;弧长的计算.
(1)根据等边对等角得出∠OBC=∠OCB,进而利用已知得出2∠OBC+2∠CBE=180°,即可得出OB⊥BE,BE是⊙O的切线;
(2)利用切线的性质以及等边三角形的判定得出△OCD是等边三角形,进而利用弧长公式求出即可.
此题主要考查了弧长公式的应用以及等边三角形的判定和切线的性质和判定等知识,熟练掌握切线的性质是解题关键.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )