试题
题目:
(2013·鄞州区模拟)如图,已知△ABC中,AB=AC,∠C=30°,AD⊥BC于D,以A为圆心,AD为半径画⊙O与AB、AC分别相交于点G、F,与CA的延长线交于点E,连接BE.
(1)求证:BE是⊙A的切线;
(2)连接DG、DF,判断四边形AGDF的形状,并说明理由.
答案
(1)证明:∵AB=AC,∠C=30°,
∴∠ABC=∠C=30°,
∵AD⊥BC,
∴∠BAD=∠CAD=60°,
∴∠EAB=60°=∠BAD,
∵在△AEB和△ADB中
AE=AD
∠EAB=∠DAB
AB=AB
∴△AEB≌△ADB(SAS),
∴∠AEB=∠ADB=90°,
即AE⊥BE,
∵AE为半径,
∴BE是⊙O的切线;
(2)解:四边形AGDF的形状是菱形.理由如下:
∵∠BAD=∠CAD=60°,AG=AD=AF,
∴△AGD、△AFD是等边三角形,
∴AG=GD=AD=DF=AF,
即AG=GD=DF=AF,
∴四边形AGDF是菱形.
(1)证明:∵AB=AC,∠C=30°,
∴∠ABC=∠C=30°,
∵AD⊥BC,
∴∠BAD=∠CAD=60°,
∴∠EAB=60°=∠BAD,
∵在△AEB和△ADB中
AE=AD
∠EAB=∠DAB
AB=AB
∴△AEB≌△ADB(SAS),
∴∠AEB=∠ADB=90°,
即AE⊥BE,
∵AE为半径,
∴BE是⊙O的切线;
(2)解:四边形AGDF的形状是菱形.理由如下:
∵∠BAD=∠CAD=60°,AG=AD=AF,
∴△AGD、△AFD是等边三角形,
∴AG=GD=AD=DF=AF,
即AG=GD=DF=AF,
∴四边形AGDF是菱形.
考点梳理
考点
分析
点评
切线的判定;全等三角形的判定与性质;菱形的判定.
(1)根据等腰三角形性质求出∠EAB=∠DAB,根据SAS证△EAB≌△DAB,推出∠AEB=∠ADB=90°,根据切线判定推出即可;
(2)根据等边三角形的判定得出等边三角形△AGD、△AFD,推出AG=GD=AD=DF=AF,根据菱形判定推出即可.
本题考查了切线的判定,等腰三角形性质,等边三角形性质和判定,菱形判定的应用,主要考查学生的推理能力.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )