试题
题目:
(2003·山东)如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为弧BC的中点,OE交BC于F,DE交AC于G,∠AD
G=∠AGD.
(1)求证:AD是⊙O的切线;
(2)如果AB=2,AD=4,EG=2,求⊙O的半径.
答案
(1)证明:连接OD.
∵E为BC的中点,
∴OE⊥BC于F.
∴∠AGD+∠ODE=∠EGF+∠OED=90°.(2分)
则OD=OE,
∴∠ODE=∠OED.(3分)
∵∠AGD=∠ADG,
∴∠ADG+∠ODE=90°.
即OD⊥AD,
∴AD是⊙O的切线.(5分)
(2)解:∵AD=4,AB=2,AD
2
=AB·AC;
∴AC=8.(6分)
∵AD=AG,
∴BG=2,CG=4.
∵EG=2,EG·GD=BG·CG,
∴DG=4,(7分)
∴AD=DG=AG.
∴∠ADG=60°.
作OH⊥ED于H,则∠EOH=60°,
在Rt△OEH中,EH=
1
2
(EG+GD)=3.
∴OE=
EH
sin60°
=
2
3
.
即⊙O的半径为
2
3
.(8分)
(1)证明:连接OD.
∵E为BC的中点,
∴OE⊥BC于F.
∴∠AGD+∠ODE=∠EGF+∠OED=90°.(2分)
则OD=OE,
∴∠ODE=∠OED.(3分)
∵∠AGD=∠ADG,
∴∠ADG+∠ODE=90°.
即OD⊥AD,
∴AD是⊙O的切线.(5分)
(2)解:∵AD=4,AB=2,AD
2
=AB·AC;
∴AC=8.(6分)
∵AD=AG,
∴BG=2,CG=4.
∵EG=2,EG·GD=BG·CG,
∴DG=4,(7分)
∴AD=DG=AG.
∴∠ADG=60°.
作OH⊥ED于H,则∠EOH=60°,
在Rt△OEH中,EH=
1
2
(EG+GD)=3.
∴OE=
EH
sin60°
=
2
3
.
即⊙O的半径为
2
3
.(8分)
考点梳理
考点
分析
点评
专题
切线的判定.
(1)要证AD是⊙O的切线,只要连接OD,再证∠ADO=90°即可;
(2)作OH⊥ED于H,证明AD=DG=GA,得出∠EOH=60°,运用三角函数求出⊙O的半径.
本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
计算题;证明题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )