试题
题目:
(2005·湘潭)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,P为BC上一点.
(1)若∠APD=90°,找出图中两个相似的三角形,并加以证明;
(2)若AB=9,DC=4,P为BC的中点,∠APD=90°,求BC的长;
(3)在(2)的条件下,试探求以AD为直径的圆与BC所在直线的位置关系,并予以证明.
答案
解:(1)△ABP∽△PCD.
证明:∵∠APD=90°,
∴∠DPC+∠APB=90°.
∵∠DPC+∠CDP=90°,
∴∠CDP=∠APB.
∵∠C=∠B=90°,
∴△ABP∽△PCD.
(2)∵△ABP∽△PCD,
∴CD:PC=BP:AB.
CD·AB=BP·CP=BP
2
=9×4=36,
∴BP=PC=6,BC=12.
(3)过D作DE⊥AB于E,
根据勾股定理AD=13.
设AD中点O,连接OP,
∴OP是梯形ABCD的中位线.
∴OP⊥BC.
且0P=
1
2
(CD+AB)=6.5=AO.
∴以底边AD为直径的圆与线段BC所在的直线相切.
解:(1)△ABP∽△PCD.
证明:∵∠APD=90°,
∴∠DPC+∠APB=90°.
∵∠DPC+∠CDP=90°,
∴∠CDP=∠APB.
∵∠C=∠B=90°,
∴△ABP∽△PCD.
(2)∵△ABP∽△PCD,
∴CD:PC=BP:AB.
CD·AB=BP·CP=BP
2
=9×4=36,
∴BP=PC=6,BC=12.
(3)过D作DE⊥AB于E,
根据勾股定理AD=13.
设AD中点O,连接OP,
∴OP是梯形ABCD的中位线.
∴OP⊥BC.
且0P=
1
2
(CD+AB)=6.5=AO.
∴以底边AD为直径的圆与线段BC所在的直线相切.
考点梳理
考点
分析
点评
专题
切线的判定;平行线的性质;相似三角形的判定与性质.
(1)应该是三角形DCP和ABP,可根据等角的余角相等和一组直角来证明.
(2)根据(1)的相似三角形,可得出关于CP,PB,DC,AB的比例关系,由于,BP=PC,可求出BP的长,也就求出了BC的长.
(3)可连接圆心和P点,证明圆心到P的线段等于半径的长并且与BC垂直.由于直角三角形的外接圆的圆心就是斜边的中点,因此OP等于斜边的一半也就是半径的长,OP就是直角梯形ABCD的中位线,那么根据平行即可得出垂直.
本题考查直角梯形的性质,直角三角形的性质以及相似三角形的判定和性质等知识点.根据相似三角形求出BC的长是解题的关键.
综合题;压轴题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )